Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Bedia, Elizbeth Chipa |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-03102022-142030/
|
Resumo: |
Modelos de fragilidade foram desenvolvidos para quantificar tanto a heterogeneidade quanto a associação em dados multivariados de tempos de eventos. As distribuições de fragilidade utilizadas em muitos estudos incluem as distribuições gama, Inversa Gaussiana (IG), ou a Positiva estável (PE). Estas distribuições geralmente são escolhidos devido à simplicidade analítica e computacional ou por alguma propriedade atrativa do modelo. A escolha da distribuição da fragilidade é de fundamental importância para assim chegar a uma boa descrição da estrutura de dependência presente nos dados. Uma alternativa para o problema da escolha do modelo de fragilidade seria escolher apenas uma família de distribuições de fragilidade e usá-la como modelo geral. Neste trabalho, estudamos dados de sobrevivência bivariados com estrutura de riscos semicompetitivos (FINE; JIANG; CHAPPELL, 2001) e dados bivariados de longa duração. Para incorporar uma estrutura de dependência entre os tempos de eventos propomos a família de distribuições Power variance function (PVF) como modelo de fragilidade compartilhada a qual inclui as distribuições antes mencionadas. Dados com estrutura de riscos semicompetitivos surge como uma variante da estrutura de riscos competitivos. Na estrutura de riscos semicompetitivos, usualmente, dois eventos são considerados, a saber, um terminal e um não terminal. Sendo que, o evento terminal censura o evento não terminal, mas não vice-versa. Geralmente, os dois eventos estão correlacionados. Então a dependência entre o tempo de falha do evento terminal e o não terminal é incorporada através da fragilidade PVF compartilhada entre as taxas de transição condicional do modelo de doença-morte que é equivalente a um problema de riscos semicompetitivos (XU; KALBFLEISCH; TAI, 2010). Para os dados bivariados de longa duração, que caracterizam-se por possuir uma fração de indivíduos não suscetíveis ao evento de interesse após um longo tempo, foram consideradas situações em que existem dois tipos de causas não observáveis, onde cada causa está relacionada com tempos de ocorrência de um evento de interesse. Para modelar a dependência entre os dois tempos introduzimos uma variável de fragilidade PVF. Para ambos os modelos, um estudo de simulação é apresentado para avaliar o desempenho do método de máxima verossimilhança na estimativa de parâmetros. Finalmente, dados de câncer de cólon são usados na aplicação do modelo com estrutura de riscos semicompetitivos e dados de churn de clientes brasileiros em uma instituição financeira são usados na aplicação do modelos de longa duração. |