Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Vigas, Valdemiro Piedade |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/11/11134/tde-09052022-155332/
|
Resumo: |
O presente trabalho propõe uma classe de modelos que se baseia numa família de distribuições contínuas, intitulada de odd log-logística generalizada, considerando alguns cenários que ocorrem com frequência na análise de sobrevivência. Inicialmente, apresenta-se uma nova família de modelos de sobrevivência denominada Neyman tipo A odd log-logística generalizada de longa duração. Esta, fundamenta-se nos diferentes esquemas de ativação em que a quantidade de fatores se adéqua a uma distribuição discreta Neyman tipo A e o tempo até a ocorrência do evento segue uma família de distribuições contínuas odd log-logística generalizada. A metodologia apresentada também é aplicada de forma similar na presença das covariáveis por meio do modelo de regressão. Além disso, é comum em situações práticas que existam dados de sobrevida com informações na censura. Assim, outro objetivo deste trabalho é introduzir a família odd log-logística generalizada no contexto de censura informativa. O modelo proposto se fundamenta na suposição de que os tempos de falha e de censura são condicionalmente independentes dada uma fragilidade, na qual as variáveis de censura e fragilidade se ajustam às distribuições odd log-logística generalizada e gama, respectivamente. Tal metodologia também se aplica de maneira análoga através do modelo de regressão. O último enfoque abordado é a utilização da família odd log-logística generalizada na presença da censura intervalar tanto na ausência, quanto na presença de covariáveis por meio do modelo de regressão. A escolha deste mecanismo de censura é adequado quando o tempos exatos de falha não são conhecidos, sabendo-se apenas que os mesmos ocorreram dentro de um intervalo de tempo e não em um ponto específico. As análises clássica e Bayesiana são utilizadas para a estimação dos parâmetros dos modelos. Realiza-se diferentes estudos de simulação com o intuito de estudar a média, o viés e a raiz do erro quadrático médio das estimativas de máxima verossimilhança dos modelos nos diferentes esquemas de ativação, valores de parâmetros, tamanhos de amostra e percentuais de censura. Critérios de seleção de modelos também são aplicados, além das técnicas gráficas como TTT-Plot e Kaplan-Meier. Utiliza-se as análises de sensibilidade e de resíduos para verificar as suposições do modelo de regressão. Por fim, conjuntos de dados reais são apresentados para demonstrar a adequabilidade dessa família. |