Agrupamento semântico de aspectos para mineração de opinião

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Vargas, Francielle Alves
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-31072018-170236/
Resumo: Com o rápido crescimento do volume de informações opinativas na web, extrair e sintetizar conteúdo subjetivo e relevante da rede é uma tarefa prioritária e que perpassa vários domínios da sociedade: político, social, econômico, etc. A organização semântica desse tipo de conteúdo, é uma tarefa importante no contexto atual, pois possibilita um melhor aproveitamento desses dados, além de benefícios diretos tanto para consumidores quanto para organizações privadas e governamentais. A área responsável pela extração, processamento e apresentação de conteúdo subjetivo é a mineração de opinião, também chamada de análise de sentimentos. A mineração de opinião é dividida em níveis de granularidade de análise: o nível do documento, o nível da sentença e o nível de aspectos. Neste trabalho, atuou-se no nível mais fino de granularidade, a mineração de opinião baseada em aspectos, que consiste de três principais tarefas: o reconhecimento e agrupamento de aspectos, a extração de polaridade e a sumarização. Aspectos são propriedades do alvo da opinião e podem ser implícitos e explícitos. Reconhecer e agrupar aspectos são tarefas críticas para mineração de opinião, no entanto, também são desafiadoras. Por exemplo, em textos opinativos, usuários utilizam termos distintos para se referir a uma mesma propriedade do objeto. Portanto, neste trabalho, atuamos no problema de agrupamento de aspectos para mineração de opinião. Para resolução deste problema, optamos por uma abordagem baseada em conhecimento linguístico. Investigou-se os principais fenômenos intrínsecos e extrínsecos em textos opinativos a fim de encontrar padrões linguísticos e insumos acionáveis para proposição de métodos automáticos de agrupamento de aspectos correlatos para mineração de opinião. Nós propomos, implementamos e comparamos seis métodos automáticos baseados em conhecimento linguístico para a tarefa de agrupamento de aspectos explícitos e implícitos. Um método inédito foi proposto para essa tarefa que superou os demais métodos implementados, especialmente o método baseado em léxico de sinônimos (baseline) e o modelo estatístico com base em word embeddings. O método proposto também não é dependente de uma língua ou de um domínio, no entanto, focamos no Português do Brasil e no domínio de produtos da web.