Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Fonseca, Erick Rocha |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102018-144020/
|
Resumo: |
O reconhecimento de implicação textual (RIT) consiste em identificar automaticamente se um trecho de texto em língua natural é verdadeiro baseado no conteúdo de outro. Este problema vem sendo estudado por pesquisadores da área de Processamento de Línguas Naturais (PLN) há alguns anos, e ganhou certo destaque mais recentemente, com a maior disponibilidade de dados anotados e desenvolvimento de métodos baseados em deep learning. Esta pesquisa de doutorado teve como objetivo o desenvolvimento de recursos e métodos computacionais para o RIT, com especial foco em língua portuguesa. Durante sua realização, foi compilado o corpus ASSIN, o primeiro a fornecer dados para treinamento e avaliação de sistemas de RIT em português, e foi organizado o workshop de mesmo nome, que reuniu pesquisadores interessados no tema. Além disso, foram feitos experimentos computacionais com diferentes tipos de estratégias para o RIT, com dados em inglês e em português. Foi desenvolvido um novo modelo para o RIT, o TEDIN (Tree Edit Distance Network). O modelo é baseado no conceito de distância de edição entre árvores sintáticas, já explorado em outros trabalhos de RIT. Seu diferencial é combinar a representação de conhecimento linguístico explícito com a flexibilidade e capacidade representativa de redes neurais. Foi também desenvolvido o Infernal, um modelo para RIT que usa técnicas clássicas de aprendizado de máquina com engenharia de atributos. Os resultados experimentais do TEDIN ficaram abaixo de outros modelos da literatura, e uma análise cuidadosa de seu comportamento indica a dificuldade de se modelar as diferenças entre árvores sintáticas. Por outro lado, o Infernal teve resultados positivos no ASSIN, definindo o novo estado-da-arte para o RIT em português. |