Reconhecimento de implicação textual em português

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Fonseca, Erick Rocha
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102018-144020/
Resumo: O reconhecimento de implicação textual (RIT) consiste em identificar automaticamente se um trecho de texto em língua natural é verdadeiro baseado no conteúdo de outro. Este problema vem sendo estudado por pesquisadores da área de Processamento de Línguas Naturais (PLN) há alguns anos, e ganhou certo destaque mais recentemente, com a maior disponibilidade de dados anotados e desenvolvimento de métodos baseados em deep learning. Esta pesquisa de doutorado teve como objetivo o desenvolvimento de recursos e métodos computacionais para o RIT, com especial foco em língua portuguesa. Durante sua realização, foi compilado o corpus ASSIN, o primeiro a fornecer dados para treinamento e avaliação de sistemas de RIT em português, e foi organizado o workshop de mesmo nome, que reuniu pesquisadores interessados no tema. Além disso, foram feitos experimentos computacionais com diferentes tipos de estratégias para o RIT, com dados em inglês e em português. Foi desenvolvido um novo modelo para o RIT, o TEDIN (Tree Edit Distance Network). O modelo é baseado no conceito de distância de edição entre árvores sintáticas, já explorado em outros trabalhos de RIT. Seu diferencial é combinar a representação de conhecimento linguístico explícito com a flexibilidade e capacidade representativa de redes neurais. Foi também desenvolvido o Infernal, um modelo para RIT que usa técnicas clássicas de aprendizado de máquina com engenharia de atributos. Os resultados experimentais do TEDIN ficaram abaixo de outros modelos da literatura, e uma análise cuidadosa de seu comportamento indica a dificuldade de se modelar as diferenças entre árvores sintáticas. Por outro lado, o Infernal teve resultados positivos no ASSIN, definindo o novo estado-da-arte para o RIT em português.