Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Guzmán, Jorge Luis Bazán |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-121551/
|
Resumo: |
A modelagem de dados binários é dominada pelo uso de ligaçòes simétricas (em torno da probabilidade de sucesso P 'IND. i'= 0,5) como o logito ou o probito. No entanto, ligações simétricas podem ser inadequadas e muitas vezes mal especificadas. Um dos propósitos desta tese foi introduzir uma função de ligação probito assimétrica generalizada que apresenta como casos particulares as ligações propostas em Chen et al. (1999), Bazan et al. (2004) e a ligação probito, assim como apresentar condições para as estimativas de máxima verossimilhança e para a distribuição a posteriori para os parâmetros de regressão. Além disso, desenvolvemos inferência bayesiana baseada na metodologia de cadeias de Markov por Monte Carlo (Matkov chain Monte Carlo - MCMC) que é de simples implementação e comparamos o modelo proposto com ligações alternativas para um conjunto de dados previamente analisado na literatura. Por outro lado, a suposição de normalidade para variáveis latentes e curvas características dos itens (CCI) tem sido usadas nos últimos 50 anos em muitos modelos psicométricos para a Teoria de Resposta ao Item (TRI). Neste trabalho, introduzimos uma nova família de modelos assimétricos para a TRI, denominada família TRI normal assimétrica (TRI-NA). Esta família estende o modelo probito normal, considerando: a) CCIs baseadas na ligação assimétrico generalizada apresentada e b) variáveis latentes que modelam a habilidade individual distribuídas a priori com distribuição normal assimétrica. Quatro modelos fazem parte da família TRI-NA, considerando dois ou um tipo de assimetria na especificação da CCI e na especificação da variável latente. São elas: o modelo probito assimétrico-normal assimétrico (PANA), probito normal assimétrico (PNA), probito assimétrico normal (PAN) e o probito-normal usual (PN). Assim, a família TRI-NA é uma família de modelos mais flexível para se ajustar a um conjunto de dados com respostas dicotômicas. A metodologia Bayesiana de inferência é desenvolvida usando a metodologia de dados aumentados para implementar o algoritmo MCMC. Escolha de modelos entre simétricos e assimétricos também é considerada usando os critérios DIC (critério de informação de desvio), AIC e BIC esperados e residuais latentes. |