Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Lima, Luiz Paulo Medina de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-14092018-142516/
|
Resumo: |
Modelos preditivos de mercado são ferramentas importantes para tomadores de decisões no âmbito público e privado. Devido à complexidade dinâmica do mercado imobiliário, composta pela interação de dois submercados distintos (mercado de ativos imobiliários e mercado de consumo de espaço) e pela limitação de dados disponíveis, o estudo analítico de mercados imobiliários requer a modelagem paramétrica de um sistema de equações que os descrevam, seguido pela identificação dos parâmetros deste sistema utilizando dados reais de uma região. Neste trabalho, estudamos o modelo dinâmico de mercado imobiliário proposto por Wheaton (1999), criado a partir do popular modelo de quatro quadrantes de autoria de DiPasquale e Wheaton (1996). Utilizamos técnicas de identificação de sistemas para elaborar um modelo de aprendizado para o estoque imobiliário, e o implementamos em Matlab. Aplicamos o método elaborado em dados simulados, para validá-lo, e então aplicamos o mesmo método, com adaptações, em dados reais do mercado imobiliário canadense. Os resultados obtidos validam o método de identificação de sistema dinâmico quando testado em dados simulados, e corroboram o modelo de Wheaton (1999) como modelo preditivo em dados reais. Ademais, os resultados indicam que um modelo que seja capaz de entender a evolução dinâmica dos parâmetros estáticos do modelo de Wheaton (1999), poderia melhorar os resultados deste como ferramenta preditiva. |