Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Vieira, Gilson |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/95/95131/tde-03072012-172159/
|
Resumo: |
Esta dissertação desenvolve e aplica métodos para caracterizar regiões cerebrais durante o estado de repouso. Utilizam-se grafos para representar a inter-dependência temporal de sinais de ressonância magnética funcional provenientes de regiões cerebrais distintas. Vértices representam regiões cerebrais e arestas representam a conectividade funcional. Buscando superar os problemas de visualização e interpretação desta forma de representação, elaboram-se métodos quantitativos para caracterizar padrões de conectividade entre regiões cerebrais. Para cada sujeito analisado: 1) Faz-se a redução da dimensionalidade espacial das imagens de ressonância magnética funcional respeitando os limites anatômicos das regiões cerebrais. 2) Estima-se a rede de conectividade funcional pela coerência direcionada entre pares de regiões distintas. 3) Constrói-se um grafo direcionado e pesado pela medida de conectividade. 4) Quantificam-se os vértices por índices e faz-se o registro destes valores no espaço comum MNI. 5) Avalia-se a consistência de cada índice pelo teste não paramétrico de Friedman seguido de análises de múltiplas comparações. A análise de 198 imagens de sujeitos sadios produziu resultados consistentes e biologicamente plausíveis. Em sua maioria, revelou regiões associadas a conceitos anatômicos de conectividade e integração cerebral. Embora de implementação simples, o método proporciona informações de natureza dinâmica sobre as relações entre diferentes regiões cerebrais e pode ser utilizado futuramente para estudar e entender desordens psiquiátricas/neurológicas. |