Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Pola, Ives Renê Venturini |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-14072005-150243/
|
Resumo: |
Os sistemas Gerenciadores de Bases de Dados (SGBDs) foram desenvolvidos para manipular domínios de dados numéricos e/ou pequenas seqüencias de caracteres (palavras) e não foram projetados prevendo a manipulação de dados complexos, como por exemplo dados multimídia. Os operadores em domínios de dados que requisitam a relação de ordem têm pouca utilidade para manipular operações que envolvem dados complexos. Uma classe de operadores que se adequa melhor para manipular esses dados são os operadores por similaridade: consulta por abrangência (``range queries') e consulta de vizinhos mais próximos (``k-nearest neighbor queries'). Embora muitos resultados já tenham sido obtidos na elaboração de algoritmos de busca por similaridade, todos eles consideram uma única função para a medida de similaridade, que deve ser universalmente aplicável a todos os pares de elementos do conjunto de dados. Este projeto propõe explorar a possibilidade de trabalhar com estruturas de dados concebidas dentro dos conceitos de dados em domínios métricos, mas que admitam o uso de uma função de distância adaptável, ou seja, que mude para determinados grupos de objetos, dependendo de algumas características universais, e assim permitindo acomodar características que sejam particulares a algumas classes de imagens e não de todo o conjunto delas, classificando as imagens em uma hierarquia de tipos, onde cada tipo está associado a uma função de distância diferente e vetores de características diferentes, todos indexados numa mesma árvore. |