Estudo das propriedades físico-químicas e funcionais de uma endo-1,4-B-xilanase de Aspergillus tamarii Kita e a sua aplicação na produção de xilooligossacarídeos

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Heinen, Paulo Ricardo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/17/17131/tde-25042018-145434/
Resumo: As endo-1,4-?-xilanases (EC 3.2.1.8) formam o maior grupo de enzimas hidrolíticas envolvido na degradação da xilana, visto que catalisam a hidrólise aleatória de ligações glicosídicas do tipo ?-1,4 no interior da sua cadeia principal, produzindo xilooligossacarídeos de diferentes tamanhos. Na natureza, essas enzimas estão intimamente relacionadas ao fornecimento de energia para o desenvolvimento dos organismos que as produzem. Em geral, as xilanases são isoladas preferencialmente de bactérias e fungos, e têm demonstrado grande potencial na produção de pães, ração animal, alimentos, bebidas, xilitol e bioetanol. O presente trabalho propôs o isolamento de uma nova endo-1,4-?-xilanase por meio de técnicas de produção e purificação acessíveis que pudessem viabilizar economicamente a integração desse biocatalisador aos processos industriais. O fungo Aspergillus tamarii Kita, oriundo de uma amostra de solo da Mata Atlântica, mostrou-se um bom produtor de xilanases em meio de cultura Adams suplementado com bagaço de cevada, um subproduto das indústrias cervejeiras. Após a otimização do processo de fermentação submersa, o extrato enzimático exibiu duas xilanases em gel de atividade para proteínas nativas, identificadas por espectrometria de massas como glicosil hidrolases pertencentes às famílias 10 e 11. A sacarificação enzimática de três resíduos agroindustriais, com base em um delineamento experimental de misturas, demonstrou que a combinação ternária desses componentes, em iguais proporções, possui considerável relevância para a produção de açúcares fermentáveis, tais como glicose e xilose. Em ensaios de imobilização, a xilanase GH11 foi satisfatoriamente estabilizada em matrizes de caráter iônico e covalente. A imobilização por ligação covalente multipontual em glioxil-agarose elevou a temperatura ótima de atividade de 60 para 65 °C e ofertou um considerável ganho de termoestabilidade ao derivado, que apresentou meia vida de 60 minutos a 80 °C. Além disso, a estabilização da enzima nesse suporte permitiu a produção dos seguintes xilooligossacarídeos: xilobiose, xilotriose, xilotetraose e xilopentaose. A purificação da xilanase GH11 foi realizada por meio de uma única etapa cromatográfica de troca catiônica, com rendimento final de 36,72% e um fator de purificação de 7,43 vezes. A massa molecular da enzima foi estimada em 19,5 kDa. Ademais, a sua estrutura tridimensional foi predita por modelagem comparativa, exibindo como modelo final uma arquitetura do tipo ?-jelly roll, comum às xilanases da família 11. Em ensaios de caracterização, a xilanase apresentou melhor atividade em pH 5,5 e manteve atividade residual superior a 80% na faixa de pH compreendida entre 4,0 e 9,0, durante 24 horas. Em relação à temperatura, a sua atividade ótima foi observada a 60 °C, contudo, a sua termoestabilidade foi mais expressiva a 50 °C, retendo cerca de 70% da sua atividade inicial por 480 minutos. Para a xilana beechwood, os valores de velocidade máxima e constante de dissociação aparente foram iguais a 1.330,20 µmol/min/mg e 8,13 mg/mL, respectivamente. Na concentração de 5 mM, os metais pesados Co2+, Hg+, Pb2+ e Zn2+ apresentaram um ponderável efeito de inibição sobre a xilanase GH11, enquanto que os íons Ba2+ e Ni2+, assim como os compostos ?-mercaptoetanol e DTT, exibiram um aumento superior a 20% em sua atividade. Por fim, a análise em tempo real da atividade xilanásica revelou que o substrato xilopentaose corresponde ao menor xilooligossacarídeo capaz de ser eficientemente hidrolisado. Sendo assim, a nova endo-xilanase GH11 isolada do fungo A. tamarii Kita exibe uma série de propriedades físico-químicas favoráveis a sua aplicabilidade em escala industrial.