Equação de estimação generalizada e influência local para modelos de regressão beta com medidas repetidas

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Venezuela, Maria Kelly
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-10072008-210246/
Resumo: Utilizando a teoria de função de estimação linear ótima (Crowder, 1987), propomos equações de estimação generalizadas para modelos de regressão beta (Ferrari e Cribari-Neto, 2004) com medidas repetidas. Além disso, apresentamos equações de estimação generalizadas para modelos de regressão simplex baseadas nas propostas de Song e Tan (2000) e Song et al. (2004) e equações de estimação generalizadas para modelos lineares generalizados com medidas repetidas baseadas nas propostas de Artes e Jorgensen (2000) e Liang e Zeger (1986). Todas essas equações de estimação são desenvolvidas sob os enfoques da modelagem da média com homogeneidade da dispersão e da modelagem conjunta da média e da dispersão com intuito de incorporar ao modelo uma possível heterogeneidade da dispersão. Como técnicas de diagnóstico, desenvolvemos uma generalização de algumas medidas de diagnóstico quando abordamos quaisquer equações de estimação definidas tanto para modelagem do parâmetro de posição considerando a homogeneidade do parâmetro de dispersão como para modelagem conjunta dos parâmetros de posição e dispersão. Entre essas medidas, destacamos a proposta da influência local (Cook, 1986) desenvolvida para equações de estimação. Essa medida teve um bom desempenho, em simulações, para destacar corretamente pontos influentes. Por fim, realizamos aplicações a conjuntos de dados reais.