Modelo linear beta Weibull generalizado: propriedades, estimação, diagnóstico e aplicações

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Santana, Tiago Viana Flor de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-29112016-150708/
Resumo: Neste trabalho dois novos modelos estatísticos de regressão são propostos, com estrutura muito semelhante aos Modelos Lineares Generalizados (MLG) porém, admitindo as distribuições Weibull exponenciada (WE) e beta Weibull (BW) para o componente aleatório as quais não pertencem a família exponencial como é requerido em MLG. Os novos modelos trazem uma nova abordagem para as distribuições admitidas em modelos de regressão e estende o MLG para além da família exponencial. Os modelos, nomeados por Modelo Linear Weibull Exponeciada Generalizado (MLWEG) e Modelo Linear Beta Weibull Generalizado (MLBWG), possuem como caso particular o modelo Exponencial, pertencente a família de MLG, além de outros modelos que os MLGs não contemplam como, por exemplo: Weibull, WE, Exponencial Exponenciado (EE) entre outros. Além da função taxa de falha (ftf) constante da distribuição Exponencial, os novos modelos ajustam também formas monótonas e não monótonas da ftf. Quando se admite função de ligação logarítmica obtém-se o mesmo modelo de locação e escala, muito utilizado em análise de sobrevivência, sem a necessidade de transformação da variável resposta simplificando a modelagem e permitindo maior compreensão da influência das covariáveis na resposta. Método de estudo de observações influentes foi construído baseado na metodologia de influência local sobre três esquemas de perturbações: perturbação da verossimilhança, da variável resposta e das covariáveis e a análise de resíduo foi proposta a partir da função quantílica. Por fim, dois conjuntos de dados reais foram utilizados para ilustrar a aplicabilidade dos modelos propostos e seus resultados discutidos.