Propriedades assintóticas e estimadores consistentes para a probabilidade de clustering

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Melo, Mariana Pereira de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-16092014-165223/
Resumo: Considere um processo estocástico X_m em tempo discreto definido sobre o alfabeto finito A. Seja x_0^k-1 uma palavra fixa sobre A^k. No estudo das propriedades estatísticas na teoria de recorrência de Poincaré, é clássico o estudo do tempo decorrente até que a sequência fixa x_0^k-1 seja encontrada em uma realização do processo. Tipicamente, esta é uma quantidade exponencialmente grande com relação ao comprimento da palavra. Contrariamente, o primeiro tempo de retorno possível para uma sequência dada está definido como sendo o mínimo entre os tempos de entrada de todas as sequências que começam com a própria palavra e é uma quantidade tipicamente pequena, da ordem do tamanho da palavra. Neste trabalho estudamos o comportamento da probabilidade deste primeiro retorno possível de uma palavra x_0^k-1 dado que o processo começa com ela mesma. Esta quantidade mede a intensidade de que, uma vez observado um conjunto alvo, possam ser observados agrupamentos ou clusters. Provamos que, sob certas condições, a taxa de decaimento exponencial desta probabilidade converge para a entropia para quase toda a sequência quando k diverge. Apresentamos também um estimador desta probabilidade para árvores de contexto e mostramos sua consistência.