REDES NEURAIS ARTIFICIAIS PARA PREVISAO CHUVA/VAZAO.

Detalhes bibliográficos
Ano de defesa: 1996
Autor(a) principal: Ballini, Rosangela
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24112017-103742/
Resumo: Redes Neurais Artificiais vêm sendo amplamente usada em uma variedade de áreas. Uma destas áreas é a previsão de séries temporais. Neste trabalho, uma investigação sobre a adequabilidade de usar os modelos de redes neurais conhecidos como Kohonen e Multi-Camadas com algoritmo Back-Propagation, na previsão de vazão, é realizada. Além disso, estes métodos são comparados com o Método dos Vizinhos Mais Próximos que tem sido utilizado para previsão de vazão. Uma análise comparativa é feita utilizando os dados da Bacia Hidrográfica do Rio Atibaia e os resultados mostram as vantagens e desvantagens de cada uma das técnicas utilizadas.