Problemas de otimização linear canalizados e esparsos

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: Ghidini, Carla Taviane Lucke da Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16062015-111938/
Resumo: A otimização linear tem sido objeto de estudo desde a publicação do método simplex em 1947, o qual vem sendo utilizado na prática com relativa eficiência. Com isso, inúmeras variantes deste método surgiram na tentativa de se obter métodos mais eficientes, além de várias implementações objetivando a resolução de problemas de grande porte. Os problemas de otimização linear canalizados e esparsos, objeto principal deste trabalho, são problemas de grande interesse prático, pois representam vários problemas reais, como por exemplo, problemas da programação da produção, problemas de mistura e muitos outros. O método dual simplex canalizado com busca linear por partes é um método do tipo simplex especializado para os problemas de otimização linear canalizados e será detalhado neste trabalho. Experiências computacionais foram realizadas para algumas classes de problemas de otimização linear com o objetivo de analisar o desempenho deste método, o qual foi implementado com algumas heurísticas de pivoteamento e formas de atualização da matriz básica para tentar manter a esparsidade presente e reduzir o tempo de resolução dos problemas.