Detalhes bibliográficos
Ano de defesa: |
2002 |
Autor(a) principal: |
Ghidini, Carla Taviane Lucke da Silva |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16062015-111938/
|
Resumo: |
A otimização linear tem sido objeto de estudo desde a publicação do método simplex em 1947, o qual vem sendo utilizado na prática com relativa eficiência. Com isso, inúmeras variantes deste método surgiram na tentativa de se obter métodos mais eficientes, além de várias implementações objetivando a resolução de problemas de grande porte. Os problemas de otimização linear canalizados e esparsos, objeto principal deste trabalho, são problemas de grande interesse prático, pois representam vários problemas reais, como por exemplo, problemas da programação da produção, problemas de mistura e muitos outros. O método dual simplex canalizado com busca linear por partes é um método do tipo simplex especializado para os problemas de otimização linear canalizados e será detalhado neste trabalho. Experiências computacionais foram realizadas para algumas classes de problemas de otimização linear com o objetivo de analisar o desempenho deste método, o qual foi implementado com algumas heurísticas de pivoteamento e formas de atualização da matriz básica para tentar manter a esparsidade presente e reduzir o tempo de resolução dos problemas. |