Segmentação de tumores de encéfalo em imagens por ressonância magnética baseada em informações texturais.

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Alegro, Maryana de Carvalho
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-11082009-170102/
Resumo: As imagens por ressonância magnéticas não indispensáveis no diagnóstico e tratamento de tumores do encéfalo devido ao seu alto grau de detalhamento anatômico. A tarefa de segmenta¸cão da região tumoral, nestas, permite uma análise quantitativa mais precisa, viabilizando um melhor acompanhamento da evolução/regressão da doença. Porém, a realização manual de tal trabalho é cansativa e apresenta diversas desvantagens que a tornam proibitiva, fazendo com que nao haja muitos médicos dispostos a realizá-la rotineiramente. Neste trabalho é proposto um sistema para segmenta¸cão automática de tumores do encéfalo. O sistema emprega parâmetros de textura de naturezas diversas, como estatísticos, baseados em modelo, e baseados em transformada, os quais são extraídos de diferentes tipos de imagem comuns à pratica médica (T1, T1 com contraste e FLAIR). As técnicas de análise de textura são capazes de detectar alterações mínimas nos tecidos, às vezes imperceptíveis à visão humana, fato que motiva sua adoção; e podem ser complementadas por informações adicionais como valores de intensidade. O sistema proposto conta com quatro etapas básicas: pré-processamento, extração de características, segmentação e pós-processamento; e baseia-se no uso de uma máquina de vetor de suporte para classificação dos pixeis. Os resultados obtidos mostram que o sistema apresenta uma taxa média de acerto elevada, comparável aos resultados encontrados em trabalhos relacionados, sendo capaz de localizar e delimitar a região tumoral sem necessidade de interação com o usuário. A quantificação dos resultados foi realizada utilizando-se métricas de artigos encontrados na literatura.