Modelos de fração de cura com fragilidade inflacionado de zero sob diferentes esquema de ativação

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Assunção, Danillo Magalhães Xavier
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-11092023-145419/
Resumo: Nesta tese de doutorado, a metodologia proposta se baseia em dados de sobrevivência inflacionados de zero para lidar com situações as quais existem uma fração de zeros inflacionados (ou ajustados) e de curados considerando diferentes esquemas de ativação. Nessa abordagem assumimos que a ocorrência do evento de interesse é originada por um estrutura latente de ativação: primeiro, último e aleatório, ou seja, permite que diferentes mecanismos de ativação concorrentes expliquem a ocorrência do fenômeno de interesse. Neste contexto, o novo modelo denominado modelo de fração de cura inflacionado de zero sob diferentes esquemas de ativação é uma extensão do modelo inflacionado de zeros proposto por Jr, Moreira e Louzada (2017); do modelo proposto por Roman et al. (2013) e do modelo de tempo de promoção proposto por Yakovlev (1996) e Chen, Ibrahim e Sinha (1999), pois incorporamos a inflação de zeros e os esquemas de ativações na modelagem. Para as estimativas dos parâmetros do modelo com longa duração e inflação de zeros, nós consideramos as abordagens clássica e Bayesiana. Os modelos de fração de cura ou modelos de fração de cura zero ajustados assumem indiretamente que todos os pacientes expostos ao evento de interesse têm risco homogêneo, porém, a existência de uma heterogeneidade pode ser medida através da inclusão de covariáveis. Sendo assim, é possível medir uma parcela dessa heterogeneidade pelas covariáveis, contudo tem-se a presença de um grau de heterogeneidade induzida por causas não observáveis. Os modelos que incluem essa heterogeneidade não observável entre os sujeitos são conhecidos como modelos de fragilidade. Neste contexto, o termo de fragilidade é incorporado na função de risco da modelagem proposta para controlar a heterogeneidade não observável dos pacientes em que assumimos uma distribuição gama para a variável de fragilidade. Estudos de simulação são realizados e também aplicações de dados reais