Métodos de estimação baseados em modelos na presença de dados faltantes

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Ribeiro, Taís Roberta
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-29112022-094513/
Resumo: Os dados faltantes são observações que deveriam ter sido feitas, mas não foram por algum motivo, reduzindo, assim, a capacidade de entender a natureza do fenômeno, além de dificultar a extração de informações através dos dados analisados, já que o impacto nos resultados dos estudos nem sempre são conhecidos. Como uma considerável parte das técnicas estatísticas foram desenvolvidas para analisar dados completos, os dados faltantes geralmente precisam ser tratados de maneira que o conjunto de dados resultante possa ser analisado por tais métodos já consolidados. Os métodos mais utilizados para lidar com dados faltantes se dividem, principalmente, entre métodos de remoção e de imputação de dados, sendo ambas as configurações, na maioria das vezes, desvantajosas em termos da análise do resultado final, seja por tornar os resultados viesados ou por termos que trabalhar com a incerteza associada à imputação de valores desconhecidos. Nesse trabalho, então, propomos alguns métodos baseados em modelos para a resolução do problema de dados ausentes para análise de regressão, sem que seja necessário recorrer à imputação ou à remoção de informações. Verificamos o desempenho das metodologias propostas em dados simulados sob diferentes cenários e comparamos com o desempenho de outras técnicas tradicionais de imputação e remoção de dados.