Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Gonzalez Camacho, Lesly Alejandra |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-20052021-103031/
|
Resumo: |
Sistemas de Recomendação têm ganhado importância e visibilidade principalmente em aplicações de e-commerce e transmissão de música e vídeos, nas quais a quantidade de itens que o usuário pode escolher ´e muito grande. Isso porque ao diminuir as opções aos itens de maior interesse, facilita a escolha por parte do usuário. Situações de cold start (usuário novo no sistema) dificultam a recomendação devido `a falta de informações sobre preferências do usuário. Dados de redes sociais podem ser utilizadas como fonte de informação para reduzir o impacto de cold-start. Neste cenário, identificar o grupo de amigos com maior afinidade e os amigos mais influentes podem melhorar a recomendação. Propõe-se nesta pesquisa a utilização de dados de redes sociais como principal fonte de informação externa para recomendar itens para usuários cold-start. Mais especificamente, a partir da entrada do novo usuário no sistema, por meio das credenciais da sua rede social, identifica-se seu grupo de amigos e, dentre estes, os de maior influência, para que mediante as informações de preferências deste(s) usuário(s) influente(s), se recomendem itens (músicas) ao usuário cold-start. Revisões da literatura mostraram que o modelo de fatoração de matriz e grafos tem sido as principais técnicas empregada, respectivamente, no processo de recomendação e na modelagem das interações em redes sociais. Para validar a proposta, utilizou-se um experimento controlado, no qual teve-se a efetiva participação de 20 usuários. Uma rede social, construída especialmente para a proposta, reteve informações sobre a interação entre amigos na rede social, e também, o acesso dos mesmos a um serviço de streaming de música. Nos testes foram elaboradas duas listas de recomendação, com a finalidade de comparar os resultados, uma considerando o modelo de recomendação proposto e outro sem. Os usuários avaliaram a recomendação, dando notas de 1 a 5 para cada música recomendada. A assertividade do modelo foi computada utilizando a métrica de Root Mean Squared Error (RMSE), apresentando resultado de 1,57, o que mostra que a predição da recomendação foi muito próxima aos valores dados pelos usuários. Os resultados também evidenciaram que o modelo proposto pode ser empregado para melhorar a recomendação de qualquer usuário e não apenas cold starts. Assim, considerou-se que o modelo proposto ´e bastante adequado para melhoria da recomendação. Obteve-se a autorização de um comitê de ética para a realização dos experimentos. |