Regularização social em sistemas de recomendação com filtragem colaborativa

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Zabanova, Tatyana
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/104/104131/tde-21082019-111613/
Resumo: Modelos baseados em fatoração de matrizes estão entre as implementações mais bem sucedidas de Sistemas de Recomendação. Neste projeto, estudamos as possibilidades de incorporação de informações provindas de redes sociais, para melhorar a qualidade das predições do modelo tanto em modelos tradicionais de Filtragem Colaborativa, quanto em Filtragem Colaborativa Neural.