Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Chen, Charles |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/17/17139/tde-11062021-091226/
|
Resumo: |
Resumo: Neste estudo é introduzida uma abordagem Bayesiana para analisar dados de séries temporais de contagem na presença de um ou mais pontos de mudança. Esta situação é muito comum em muitas áreas de aplicação, especialmente considerando séries temporais de contagem de epidemiologia. Quando a contagem observada n(t) os dados são diferentes de zero para cada tempo t, t = 1, 2, ....., N (número de vezes observadas), é proposto um modelo estatístico assumindo distribuições normais para o logaritmo dos dados transformados, ou seja, Y(t) = log[n(t)] na presença de um ou mais pontos de mudança. Em situações na presença de dados de contagem iguais a zero em momentos diferentes (ou seja, presença de contagem zero), o modelo estatístico baseado na transformação de logaritmo para os dados de contagem não é adequado na análise de dados. Para este caso, é proposto o uso de processos de Poisson não homogêneos (NHPP) assumindo uma modelagem PLP (power law process) para sua função intensidade na presença de pontos de mudança. Alguns exemplos com conjuntos de dados reais são apresentados para ilustrar a metodologia proposta. |