Aplicações de mecânica estatística a especiação simpátrica e inferência aproximativa

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Ribeiro, Fabiano Lemes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-10082009-094357/
Resumo: Apresenta-se nesta tese os resultados de aplicações do formalismo da Mecânica Estatística em dois problemas independentes. O primeiro diz respeito a um modelo para Evolução do Acasalamento Preferencial no processo de Especiação Simpátrica; enquanto que o segundo refere-se ao desenvolvimento de um algoritmo de aprendizado por meio de Inferência Aproximativa. No problema biológico estudado, cada indivíduo em um modelo de agentes é composto por dois traços. Enquanto um é responsável pela ecologia do indivíduo, o outro dita uma aparência física descorrelacionada com a adaptabilidade. Esses traços são expressos por diferentes loci que estão ligados entre si por uma taxa de recombinação. O modelo inclui também a possibilidade de evolução da preferência sexual dos indivíduos. Foi construído para esse modelo um diagrama de fases no espaço dos parâmetros que descrevem o ambiente como, por exemplo, quantidades de recursos e deficiência do indivíduo híbrido. Foram encontradas três fases de equilíbrio: (i) emergência de Acasalamento Preferencial; (ii) extinção de um dos alelos do locus responsável pela ecologia e (iii) equilíbrio Hardy-Weinberg. Foi verificado que o acasalamento preferencial pode emergir ou mesmo ser perdido (e vice-versa) em resposta a mudanças no ambiente. Além disso, o sistema apresenta memória característica típica de transições de primeira ordem, o que permitiu a descrição desse sistema biológico por meio do arcabouço da Mecânica Estatística. Em relação à Inferência Aproximativa, está-se interessado na construção de um algoritmo de aprendizado supervisionado por meio da técnica de Propagação de Expectativas. Mais especificamente, pretende-se inferir os parâmetros que compõem um Perceptron Professor a partir do conjunto de pares - entradas e saídas - que formam o conjunto de dados disponíveis. A estimativa desses parâmetros será feita pela substituição de uma distribuição Posterior original, geralmente intratável, por uma distribuição aproximativa tratável. o algoritmo Propagação de Expectativas foi adotado para a atualização, passo a passo, dos termos que compõem essa distribuição aproximativa. Essa atualização deve ser repetida até que a convergência seja atingida. Utilizando o Teorema do Limite Central e o método de Cavidade, foi possível obter um algoritmo genérico e que apresentou desempenho bastante evidente em dois modelos estudados: o modelo do Perceptron Binário e o modelo do Perceptron Gaussiano, com desempenho ótimo em ambos os casos.