Detalhes bibliográficos
Ano de defesa: |
2002 |
Autor(a) principal: |
Arashiro, Everaldo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/59/59135/tde-05032002-121019/
|
Resumo: |
Investigações da dinâmica crítica em modelos de magnetismo, para tempos curtos, têm aparecido com grande freqüência na literatura. Essa técnica foi descoberta por Li, Schülke e Zheng que, inspirados em trabalhos anteriores de Huse e Janssen et al., mostraram que generalizações de grandezas como a magnetização e o cumulante de Binder exibem comportamento universal já no início da simulação. O estudo da criticalidade em tempos curtos proporciona um caminho alternativo para a estimativa do expoente z, além de permitir o cálculo de um novo expoente dinâmico θ, associado ao comportamento anômalo da magnetização. Da mesma forma, simulações dependentes do tempo tornaram-se ferramenta útil para estudar transições de fase em autômatos celulares e modelos de spin. Em particular, as melhores estimativas para o expoente z do Ising bidimensional foram obtidas por meio da técnica de propagação de danos, introduzida por Kauffman no estudo de autômatos e mais tarde generalizada para modelos de spin. Na primeira parte deste trabalho utilizamos o método Monte Carlo em tempos curtos para investigar o modelo de Baxter-Wu, definido em uma rede bidimensional triangular com variáveis do tipo Ising, acopladas por interações de três corpos. Obtivemos os expoentes críticos dinâmicos z e θ além dos índices críticos estáticos ß e Nû. Os resultados não corroboram aqueles recentemente obtidos por Santos e Figueiredo para o expoente z. Na segunda parte do trabalho, investigamos a propagação de danos no modelo de Ising unidimensional submetido a duas dinâmicas propostas por Hinrichsen e Domany (HD). Em particular, nós estudamos o efeito da atualização síncrona (paralela) e assíncrona (dinâmica contínua) sobre o espalhamento do dano. Mostramos que o dano não se propaga quando a segunda dinâmica é implementada de forma assíncrona. Também mostramos que as regras para atualização do dano produzidas por essa dinâmica, quando a temperatura vai a infinito e um certo parâmetro Lambda é igual a zero, são equivalentes àquelas do bem conhecido autômato celular (modelo A) de Grassberger. |