Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Oliveira, Douglas Nunes de
 |
Orientador(a): |
Monteiro, Luiz Henrique Alves
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Presbiteriana Mackenzie
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://dspace.mackenzie.br/handle/10899/24407
|
Resumo: |
Autômatos celulares probabilistas podem ser usados para modelar a propagação de doenças contagiosas numa população composta por indivíduos suscetíveis, infectados e recuperados da infecção. A cada passo de tempo, um indivíduo suscetível pode ou permanecer suscetível ou contrair a doença de infectados, sendo a probabilidade associada ao contágio dependente do número de infectados em contato com esse suscetível. A cada passo de tempo, um indivíduo infectado pode (probabilisticamente) permanecer infectado, ou se recuperar, ou morrer pela doença ou morrer de outras causas. Um indivíduo recuperado pode, a cada iteração, ou permanecer como está ou morrer. Quando um indivíduo infectado ou recuperado morre, nasce, em seu lugar, um suscetível, de modo que a população permanece constante. Aqui, algoritmos genéticos são empregados para identificar os valores das probabilidades associadas aos processos de infecção, recuperação e morte, a partir de dados epidemiológicos do Arizona (EUA) para catapora. O objetivo é obter um modelo baseado em regras probabilistas de transição de estados capaz de reproduzir essa série temporal e verificar a qualidade da previsão do modelo. Este trabalho revela que as previsões são fortemente influenciadas pelo tamanho do reticulado do autômato celular e por restrições impostas aos valores das probabilidades. |