Detalhes bibliográficos
Ano de defesa: |
1996 |
Autor(a) principal: |
Zara, Reginaldo Aparecido |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/76/76131/tde-12062008-161602/
|
Resumo: |
Generalizamos o modelo de percolação por invasão de maneira que vários sítios possam ser simultaneamente invadidos. Propomos dois tipos de generalização: na primeira, o fluxo de fluido invasor e controlado através do perímetro do aglomerado, enquanto que na segunda modificação, o crescimento e governado pela relação de escala entre a massa e o raio de giração dos aglomerados. Estudamos cuidadosamente tanto o perfil de aceitação quanto as dimensões fractais (\'D IND.F\') dos aglomerados assim crescidos. No modelo baseado nas relações de escala, \'D IND.F\' pode ser tratado como um mero parâmetro real que pode assumir qualquer valor no intervalo (0, ?). Nos intervalos (0, \'91 SOB.48\') e (2, ?), o sistema e frustrado. Para \'D IND.F\' > 2, o modelo exibe um fenômeno interessante: em algumas etapas ocorrem explosões no crescimento da massa dos aglomerados (bursts). Na região [\'91 SOB.48\',2], os aglomerados obedecem exatamente e em qualquer escala a relação M ~ RgDF entre a massa m e o raio de giração \'RG\'. Acreditamos que estes fractais cuja estrutura completamente e estabilizada possam ser muito úteis no tratamento de problemas de diluição da mecânica estatística. |