Análise estatística na interpretação de imagens: microarranjos de DNA e ressonância magnética funcional

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Vencio, Ricardo Zorzetto Nicoliello
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/95/95131/tde-16032007-164424/
Resumo: O objetivo deste trabalho é apresentar os métodos originais em Bioinformática desenvolvidos para a análise estatística na interpretação dos dados de duas técnicas baseadas em imagens: a técnica de microarranjos de DNA e a técnica de ressonância magnética funcional. O interesse principal é abordar essas técnicas experimentais quando enfrenta-se uma situação clara de amostras escassas, isto é, quando existem relativamente poucas observações experimentais do fenômeno estudado, sendo a análise individual/personalizada o representante extremo desta situação, que tem que ser resolvida. Para tanto, opta-se pelo uso da Inferência Bayesiana no contexto da Teoria da Decisão sob Incerteza, implementada computacionalmente sob o arcabouço dos Sistemas de Suporte à Decisão. Ambas as tecnologias estudadas produzem dados complexos, baseados na interpretação das diferenças entre imagens obtidas da resposta do sistema a um estímulo e da resposta numa situação controle. O resultado deste trabalho é o desenvolvimento de dois sistemas de suporte à decisão, chamados HTself e Dotslashen, para a análise de dados de microarranjos e ressonância magnética funcional, respectivamente; e de seus métodos matemáticos/computacionais subjacentes. Os sistemas desenvolvidos extraem conhecimento racional de bancos-de-dados normativos, através de modelos matemáticos específicos, contornando então o problema de amostras escassas. Finalmente, neste trabalho são descritas aplicações a problemas reais, para destacar a utilidade dos sistemas de suporte à decisão desenvolvidos nas áreas de Biologia Molecular e Neuroimagem Funcional.