Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Gasparoto, Esthevan Augusto Goes |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/11/11150/tde-29042016-180010/
|
Resumo: |
O inventário florestal é uma das principais ferramentas na gestão dos recursos florestais, uma vez que as informações geradas por ele são utilizadas ao longo de toda a cadeia produtiva do setor. Desta forma, erros nas estimativas volumétricas dos inventários florestais devem ser controlados. Inúmeras informações podem ser obtidas a partir de imagens orbitais ou aerotransportadas, uma vez que podem cobrir facilmente toda a área de interesse, e estão comumente disponíveis em empresas florestais ou ao usuário final. A utilização de preditores derivados das imagens pode trazer benefícios para as estimativas do inventário florestal. Desta forma, a aplicação de técnicas de regressão linear múltipla (RLM) ganhou espaço no setor devido a sua facilidade de aplicação. Porém, a RLM não leva em consideração a dependência espacial entre as unidades amostrais, sendo que a geoestatística pode ser utilizada para predizer a distribuição espacial do estoque de madeira (VTCC) para uma dada região. A modelagem geoestatística mais simples como a krigagem ordinária (KO), por considerar apenas a dependência espacial entre os pontos não amostrados, pode apresentar erros de predição nestes locais. Tais erros podem ser reduzidos com a aplicação de técnicas mais robustas como a Krigagem com Deriva Externa (KDE), pois esta agrega as informações obtidas das imagens com a distribuição espacial do volume. Buscando-se avaliar as vantagens da integração do Sensoriamento Remoto (SR) ao inventário florestal foram testados 4 tipos diferentes de imagens; as oriundas dos satélites LANDSAT8, RAPIDEYE e GEOEYE, e as provenientes de aeronaves (Imagens Aerotransportadas). Avaliou-se também diferentes tipos de estimativas para a predição volumétrica sendo estas RLM, KDE e KO. A melhor estimativa serviu de variável auxiliar para o estimador de regressão (ER), sendo os resultados comparados com a abordagem tradicional da amostragem aleatória simples (AAS). Os resultados demonstraram por meio da validação cruzada que as estimativas da KDE foram mais eficientes que as estimativas da KO e da RLM. Os melhores preditores (variáveis auxiliares) foram aqueles derivados do satélite LANDSAT8 e do satélite RAPIDEYE. Obteve-se como produto das estimativas de KDE e RLM mapas capazes de detectar áreas com mortalidade ou anomalias em meio a formação florestal. A utilização de uma estimativa de KDE utilizando imagens LANDSAT8 como medida auxiliar para o ER permitiu reduzir o erro amostral da AAS de 3,87% para 2,34%. Da maneira tradicional, tal redução de erro apenas seria possível com um aumento de mais 99 unidades amostrais. |