Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Souza, Anelise de Lima |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/44/44137/tde-31072007-150731/
|
Resumo: |
Esta dissertação apresenta os resultados da investigação quanto à eficácia do algoritmo de pós-processamento para a correção do efeito de suavização nas estimativas da krigagem ordinária. Foram consideradas três distribuições estatísticas distintas: gaussiana, lognormal e lognormal invertida. Como se sabe, dentre estas distribuições, a distribuição lognormal é a mais difícil de trabalhar, já que neste tipo de distribuição apresenta um grande número de valores baixos e um pequeno número de valores altos, sendo estes responsáveis pela grande variabilidade do conjunto de dados. Além da distribuição estatística, outros parâmetros foram considerados: a influencia do tamanho da amostra e o numero de pontos da vizinhança. Para distribuições gaussianas e lognormais invertidas o algoritmo de pós-processamento funcionou bem em todas a situações. Porém, para a distribuição lognormal, foi observada a perda de precisão global. Desta forma, aplicou-se a krigagem ordinária lognormal para este tipo de distribuição, na realidade, também foi aplicado um método recém proposto de transformada reversa de estimativas por krigagem lognormal. Esta técnica é baseada na correção do histograma das estimativas da krigagem lognormal e, então, faz-se a transformada reversa dos dados. Os resultados desta transformada reversa sempre se mostraram melhores do que os resultados da técnica clássica. Além disto, a as estimativas de krigagem lognormal se provaram superiores às estimativas por krigagem ordinária. |