Detalhes bibliográficos
Ano de defesa: |
2004 |
Autor(a) principal: |
Matsubara, Edson Takashi |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19082004-092311/
|
Resumo: |
Em Aprendizado de Máquina, a abordagem supervisionada normalmente necessita de um número significativo de exemplos de treinamento para a indução de classificadores precisos. Entretanto, a rotulação de dados é freqüentemente realizada manualmente, o que torna esse processo demorado e caro. Por outro lado, exemplos não-rotulados são facilmente obtidos se comparados a exemplos rotulados. Isso é particularmente verdade para tarefas de classificação de textos que envolvem fontes de dados on-line tais como páginas de internet, email e artigos científicos. A classificação de textos tem grande importância dado o grande volume de textos disponível on-line. Aprendizado semi-supervisionado, uma área de pesquisa relativamente nova em Aprendizado de Máquina, representa a junção do aprendizado supervisionado e não-supervisionado, e tem o potencial de reduzir a necessidade de dados rotulados quando somente um pequeno conjunto de exemplos rotulados está disponível. Este trabalho descreve o algoritmo de aprendizado semi-supervisionado co-training, que necessita de duas descrições de cada exemplo. Deve ser observado que as duas descrições necessárias para co-training podem ser facilmente obtidas de documentos textuais por meio de pré-processamento. Neste trabalho, várias extensões do algoritmo co-training foram implementadas. Ainda mais, foi implementado um ambiente computacional para o pré-processamento de textos, denominado PreTexT, com o objetivo de utilizar co-training em problemas de classificação de textos. Os resultados experimentais foram obtidos utilizando três conjuntos de dados. Dois conjuntos de dados estão relacionados com classificação de textos e o outro com classificação de páginas de internet. Os resultados, que variam de excelentes a ruins, mostram que co-training, similarmente a outros algoritmos de aprendizado semi-supervisionado, é afetado de maneira bastante complexa pelos diferentes aspectos na indução dos modelos. |