Modelo baseado em aprendizado de máquina para classificar o conforto térmico de bezerras usando termografia por infravermelho

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Pereira, André Levi Viana
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/74/74131/tde-06022023-095440/
Resumo: Pesquisas recentemente realizadas no âmbito da produção animal relacionam o estresse térmico dos animais a efeitos negativos sobre sua saúde e produtividade. Estresse térmico é uma condição que prejudica o desempenho produtivo e reprodutivo do animal, e pode ser monitorado por variáveis fisiológicas e ambientais, entre elas a temperatura de superfície corporal, através da termografia por infravermelho. O objetivo deste trabalho foi desenvolver e avaliar modelos computacionais para classificação de estresse térmico em bezerras de leite por meio da termografia por infravermelho. A base de dados utilizada para a contrução dos modelos foi obtida por meio de um experimento com 10 bezerras desaleitadas da raça Holandesa, alojadas em câmara climática com controle de temperatura e submetidas a condições térmicas de conforto e estresse por meio de ondas de calor, no qual foram coletados dados fisiológicos e ambientais, incluindo dados termográficos de diferentes partes do corpo do animal. Foram construídos e avaliados modelos computacionais baseados em algoritmos de aprendizado de máquina para classificação em níveis de conforto a partir de dados ambientais e de características extraídas dos dados de termografia através de um método denominado Assinatura Térmica. Para modelagem foram utilizadas ferramentas de tratamento e mineração de dados da plataforma de serviço de computação cognitiva Watson da empresa IBM. Os modelos classificadores de estresse térmico foram desenvolvidos a partir de três diferentes algoritmos de aprendizado de máquina, quatro subconjuntos da base de dados e três tipos de rotulagem de dados, e foram comparados com o método tradicional de classificação baseado no Índice de Temperatura e Umidade. Os modelos foram capazes de classificar o estresse térmico, tendo o melhor modelo obtido acurácia de 86,8%, comparável ao desempenho obtido por modelos de outros trabalhos, além de precisão de 89% para a classe de Estresse. Os resultados mostram que a abordagem baseada em aprendizado de máquina com a assinatura térmica foi efetiva para geração de modelos com bom desempenho e com potencial de aprimoramento.