Modelos não lineares assimétricos com efeitos mistos

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Pereira, Marcos Antonio Alves
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/104/104131/tde-01112019-213133/
Resumo: Este trabalho tem como objetivo desenvolver modelos de regressão não lineares assimétricos com efeitos mistos, que proporcionam alternativas ao uso da distribuição normal e outras distribuições simétricas, para evitar a sensibilidade nas estimativas a observações atípicas e assimetria. Modelos não lineares com efeitos mistos são explorados em várias áreas do conhecimento, principalmente quando os dados estão correlacionados, como dados longitudinais, medidas repetidas e dados multiníveis, em particular, por sua flexibilidade em lidar com medidas de áreas como biologia e farmacocinética. No entanto, existem dificuldades em obter estimadores explícitos para os parâmetros nesses modelos. Atualmente muitos estudos estão sendo desenvolvidos com a família misturas de escala da distribuição skew-normal (SMSN) que abrange distribuições com caudas leves e pesadas, como a skew-normal, skew-Student-t, skew-normal contaminada e skew-slash, como também as versões simétricas destas distribuições. Neste trabalho são apresentados modelos de regressão não lineares com efeitos mistos em que as componentes aleatórias têm distribuições pertencentes a família SMSN. Para estimação dos parâmetros é utilizada uma solução numérica via algoritmo EM e suas extensões, e algoritmo de Newton-Raphson. Análises em conjuntos de dados reais são realizadas com essa nova proposta, como o estudo da cinética de drogas em seres humanos, além de análises de diagnóstico, por meio de análise de resíduos e diagnóstico de influência. São conduzidos estudos de simulações para verificar as propriedades de máxima verossimilhança dos estimadores.