Misturas de modelos de regressão linear com erros nas variáveis usando misturas de escala da normal assimétrica

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Monteiro, Renata Evangelista
Outros Autores: http://lattes.cnpq.br/5225616211203080
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Ciências Exatas
Brasil
UFAM
Programa de Pós-graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.ufam.edu.br/handle/tede/6417
Resumo: A estimação tradicional em mistura de modelos de regressão é baseada na suposição de normalidade para os erros aleatórios, sendo assim, sensível a outliers, caudas pesadas e erros assimétricos. Outra desvantagem é que, em geral, a análise é restrita a preditores que são observados diretamente. Apresentamos uma proposta para lidar com estas questões simultaneamente no contexto de mistura de regressões estendendo o modelo normal clássico. Assumimos que, conjuntamente e em cada componente da mistura, os erros aleatórios e as covariáveis seguem uma mistura de escala da distribuição normal assimétrica. Além disso, é feita a suposição de que as covariáveis são observadas com erro aditivo. Um algorítmo do tipo MCMC foi desenvolvido para realizar inferência Bayesiana. A eficácia do modelo proposto é verificada via análises de dados simulados e reais.