Geometria dos espaços de Banach C([0, α ], X) para ordinais enumeráveis α

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Zahn, Mauricio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-27082015-102002/
Resumo: A classificação isomorfa dos espaços de Banach separáveis C(K) é devida a Milutin no caso em que K são não enumeráveis e a Bessaga e Pelczynski no caso em que K são enumeráveis. Neste trabalho apresentamos uma extensão vetorial dessa classificação e tiramos várias consequências, por exemplo, considerando o espaço métrico compacto infinito K e Y um espaço de Banach: &nbsp; &nbsp; 1. Sendo 1 < p < &infin; e &Gamma; um conjunto infinito, classificamos, a menos de isomorfismo, os espaços de Banach C(K, Y &oplus; lp(&Gamma;)), quando o dual de Y contém uma cópia de lq, onde 1/p+ 1/q =1. &nbsp; &nbsp; 2. Classificamos os espaços de Banach C(K, Y &oplus; l&infin;(&Gamma;)), quando a densidade de Y é estritamente menor que 2|&Gamma;|. &nbsp; &nbsp; 3. Classificamos os espaços de Banach C(K &times;(S&oplus; &beta;&Gamma;)) e C(S &oplus; (K&times; &beta;&Gamma;)), onde S é um compacto disperso de Hausdorff arbitrário e &beta;&Gamma; é a compactificação de Stone-Cech de &Gamma;. Obtemos, também, algumas leis de cancelamento para espaços de Banach da forma C(K1,X)&oplus; C(K2,Y), onde K1 e K2 são espaços compactos métricos infinitos de Hausdorff e X, Y espaços de Banach satisfazendo condições adequadas. Estabelecemos também um teorema de quase-dicotomia envolvendo os espaços C(K,X), onde X tem cotipo finito. Finalmente, apresentamos algumas majorações nas distorções de isomorfismos positivos de C([0,&omega;k]) em C([0,&omega;]) e também de C([0,&omega;]) em C([0,&omega;k]), k&isin; N, k &ge; 2.