Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Cáceres, Fredy Walter Castellares |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20210726-183243/
|
Resumo: |
Modelos de trânsito de partículas aparecem na vida real e têm se convertido numa área de pesquisa muito ativa. embora bastante estudados, desde 1992, com a publicação do artigo de Nagel-Schreckembrg, por meio de simulações computacionais e por diversos métodos teóricos aproximados como os modelos de campo médio, existem poucos resultados rigorosos.Mostramos resultados rigorosos para vários modelos de trânsito. Provamos a existência de transição de fase e propriedades assintóticas para o autômato celular 184 e para o modelo de Fukui-Ishibashi, que generaliza o autômato 184, permitindo movimento de partículas velozes. Introduzimos um autômato celular probabilista que resgata as propriedades dos modelos de Schadschneider-Schreckenberg, conhecidos como autômatos com regras slow-to-star. Provamos a existência de transição de fase, encontramos o fluxo assintótico. Introduzimos o autômato celular probabilista com distribuição inicial a medida produto de Bernoulli de densidade p e de dinâmica de evolução dada por: cada partícula espera um tempo aleatório que tem distribuição geométrica de parâmetro p para mover-se pela primeira vez. Após este tempo, as partículas movem-se com velocidade 1 para sempre ou, em caso contrário, se deterão (várias partículas podem ocupar o mesmo sítio) se encontrarem alguma partícula parada na sua frente que bloqueie seu movimento. Neste caso as velocidades das partículas voltarão para 0 e as partículas ficarão bloqueadas até que a partícula ou as partículas que bloqueiam seus caminhos tenham partido. A partir deste instante, a partícula não bloqueada espera mais um tempo aleatório com distribuição geométrica para mover-se. Finalmente, introduziremos um modelo de trânsito de partículas que é contínuo no tempo e no espaço, que denominaremos Modelo Pontual. |