Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Buani, Bruna Elisa Zanchetta |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-10012011-085835/
|
Resumo: |
Este trabalho propõe uma alternativa para o problema de classificação de espécies de abelhas a partir da implementação de um algoritmo com base na Morfométria Geométrica e estudo das Formas dos marcos anatômicos das imagens obtidas pelas asas das abelhas. O algoritmo implementado para este propósito se baseia no algoritmo dos k-Vizinho mais Próximos (do inglês, kNN) e na Lógica Fuzzy kNN (Fuzzy k-Nearest Neighbor) aplicados a dados analisados e selecionados de pontos bidimensionais referentes as características geradas por marcos anatômicos. O estudo apresentado envolve métodos de seleção e ordenação de marcos anatômicos para a utilização no algoritmo por meio da implementação de um método matemático que utiliza o calculo dos marcos anatômicos mais significativos (que são representados por marcos matemáticos) e a formulação da Ordem de Significância onde cada elemento representa variáveis de entrada para a Fuzzy kNN. O conhecimento envolvido neste trabalho inclui uma perspectiva sobre a seleção de características não supervisionada como agrupamentos e mineração de dados, analise de pré-processamento dos dados, abordagens estatísticas para estimação e predição, estudo da Forma, Analise de Procrustes e Morfométria Geométrica sobre os dados e o tópico principal que envolve uma modificação do algoritmo dos k- Vizinhos mais Próximos e a aplicação da Fuzzy kNN para o problema. Os resultados mostram que a classificação entre amostras de abelhas no seu próprio grupo apresentam acuracia de 90%, dependendo da espécie. As classificações realizadas entre as espécies de abelhas alcançaram acuracia de 97%. |