Modelagem fuzzy para problemas de classificação com amostras não-factíveis

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Fuzyi, Estefânia Mayumi
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.uel.br/handle/123456789/15642
Resumo: Resumo: Alguns modelos de classificação não lidam muito bem com amostras reais, devido a rigidez de seus limites ou a existência de amostras que não se encaixam perfeitamente no intervalo esperado Em contrapartida, a Lógica Fuzzy apresenta vantagens como a transição gradual entre a alta e baixa pertinência da amostra ao conjunto, além de ser um modelo descritivo de fácil entendimento e análise dos resultados Dessa forma, a proposta desse trabalho é verificar o uso dos modelos Fuzzy para classificação de amostras não-factíveis e comparar seu desempenho com algoritmos de Aprendizado de Máquina Com esse objetivo, os métodos foram aplicados ao problema de avaliação de qualidade de carne suína, que apresenta diferentes padrões de avaliação e amostras não-factíveis quando utilizada a lógica Clássica para classificação De acordo com os experimentos, no pior caso a lógica Clássica foi capaz de classificar 5,88% de um dataset de 36 amostras, enquanto a Fuzzy Top-Down subiu para 18,3% Em relação aos algoritmos de Aprendizado de Máquina, a Random Forest (RF) apresentou melhores resultados em comparação aos demais, com acurácias de 1% na maioria dos casos Porém, o Fuzzy Top-Down foi capaz de igualá-la ou até mesmo superá-la, como quando a RF obteve acurácia de 63,4% e o Fuzzy Top-Down de 1%, o que comprova sua aderência ao problema