Criando espaços para a restauração de ecossistemas por meio do aumento da eficiência operacional na colheita de cana-de-açúcar

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Santoro, Giulio Brossi
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/11/11150/tde-15092022-143209/
Resumo: A demanda pela restauração de ecossistemas vem crescendo no cenário global, visando à obtenção de diferentes tipos de benefícios ambientais e sociais, como a conservação da biodiversidade, a mitigação das mudanças climáticas e a proteção de mananciais. Contudo, a disponibilização de áreas para a restauração de ecossistemas nativos é dificultada pelo uso atual do solo pela agropecuária, sendo o aumento da eficiência produtiva de sistemas agropecuários uma oportunidade para liberação de áreas marginais para a restauração. Neste sentido, destaca- se como oportunidade o aumento da eficiência da colheita mecanizada da cana-de-açúcar no estado de São Paulo. O objetivo deste trabalho foi identificar áreas marginais da produção mecanizada de cana-de-açúcar, por meio da identificação de Áreas de Linhas Curtas (ALC), visando à expansão da restauração de ecossistemas nativos para tais regiões. As ALC são caracterizadas por linhas de plantio curtas e, neste projeto, foram considerados dois limiares mínimos: 50 e 100 metros. Assim, modelos estatísticos de regressão foram desenvolvidos a partir do uso de 6 algoritmos de aprendizado de máquina supervisionado para estimar as ALC em todo o estado. Estes modelos foram baseados em uma amostragem de 120 paisagens agrícolas de 25 km2 ao longo do estado (de um total de 7.553 paisagens), nas quais as ALC foram manualmente mapeadas e foram exploradas variáveis explicativas que pudessem se correlacionar com a presença das ALC (declividade média; densidade de drenagem; percentual de cobertura de cana-de-açúcar; e métricas da paisagem aplicadas às manchas da cultura). Uma vez que as estimativas foram calculadas e espacializadas, a contribuição potencial da restauração de ecossistemas nativos nas ALC foi investigada no contexto de redução do Déficit de Reserva Legal considerando dois cenários de déficit dentro de cada paisagem. Os resultados mostraram o melhor desempenho dos modelos criados a partir do algoritmo Random Forest, para ajuste (treinamento) e validação dos dados, refletido pelo Coeficiente de Determinação (0,451 e 0,634), Erro Médio Absoluto (0,252 e 0,932) e a Raíz Quadrada do Erro Médio (0,323 e 1,195). Com esta abordagem, as estimativas de ALC para todo o estado foram de 174,19 km2 para o limiar de 100 metros; e 39,78 km2 para o limiar de 50 metros. O uso das ALC para redução do déficit de RL mostrou potencial para mitigar 100% do déficit em algumas paisagens (de 240 até 2.479 ao longo dos cenários propostos), mas de forma geral contribuiu para a mitigação de 0,43 a 4,83% da soma de déficit das paisagens estudadas, a depender do cenário considerado. Embora as ALC apresentem baixa contribuição direta para redução do déficit de RL, elas representam uma abordagem eficiente para identificação de regiões passíveis de restauração, que podem ainda ser abordadas no contexto de incentivos à compromissos voluntários; corroborando com os esforços, compromissos, políticas e projetos de restauração ecológica assumidos frente à década da restauração de ecossistemas.