Estimadores de Bayes. Aplicação ao modelo de regressão linear simples

Detalhes bibliográficos
Ano de defesa: 1981
Autor(a) principal: Simoes, Newman Ribeiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/11/11134/tde-20220208-021938/
Resumo: Este estudo apresenta, através de revisão bibliográfica, os elementos do método de Bayes em problemas de estimação de parâmetros, assunto pouco difundido na língua portuguesa. O desenvolvimento teórico mostra, de um modo geral, como as informações anteriores a um experimento são incorporadas às informações provindas de um experimento atual, através do Teorema de Bayes. São definidas Função Perda e Função Risco, mostrando como são obtidos os estimadores de Bayes quando se utiliza a função perda quadrática. Atenção particular é dada ao estudo da distribuição "a priori", reunindo algumas conclusões de trabalhos sobre informação contida na amostra e sobre a distribuição "à priori" nas situações em que não se dispõe de informação prévia sobre os parâmetros. Dispondo de informações previas, mostra-se como o método de Bayes pode utilizá-las, através das chamadas Distribuições Conjugadas. Os conceitos gerais do método bayesiano são aplicados na estimação de parâmetros em Modelo de Regressão Linear Simples, encontrando-se, no caso de função perda quadrática, os estimadores de Bayes, as funções de densidade de probabilidade "a posteriori", os testes de hipóteses, intervalos de confiança para os parâmetros e intervalo de previsão, nas situações em que a distribuição "a priori" indica ignorância sobre os parâmetros, e em que essa distribuição é informativa. Experimentos são simulados para mostrar o comportamento das estimativas de Bayes em relação às estimativas de mínimos quadrados, particularmente no caso em que se dispõem de pequenas amostras atuais e informações previas fidedignas, e na hipótese de que os coeficientes de regressão e as variâncias são os mesmos para as duas amostras. A robustez do método é verificada no caso em que esta hipótese é violada, modificando-se a variância dos dados da "amostra atual" em relação aos dados da "amostra previa". Um método aproximado para a análise desta última situação é indicado.