Detalhes bibliográficos
Ano de defesa: |
1999 |
Autor(a) principal: |
Padilha, Thereza Patrícia Pereira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12032018-104623/
|
Resumo: |
Uma grande revolução tecnológica ocorreu nos últimos anos em diversas áreas relacionadas a ciência da computação. Um dos aspectos que mais influenciou esta revolução foi o armazenamento, o processamento e a análise de grandes quantidades de dados geradas por várias empresas e centros de pesquisas. Com isso, a incorporação de métodos e técnicas estatísticas para a aquisição de conhecimento de dados na área de Aprendizado de Máquina tem apresentado um grande crescimento. O propósito desse trabalho é investigar alguns algoritmos de Aprendizado de Máquina pertencente ao paradigma estatístico para a aquisição de conhecimento a partir de conjuntos de dados. Nessa investigação foram estudados os algoritmos estatísticos Naive Bayes, Auto Class, Auto Class Pro e K-Means. Dois estudos de casos (um conjunto de plantas iris e um conjunto de domicílios de clientes) foram realizados verificando, entre outros, o comportamento desses algoritmos, a relevância dos atributos dos conjuntos de dados e apresentando os clusters encontrados nas ferramentas de visualização. |