Explorando o Potencial de Algoritmos de Aprendizado com Reforço em Robôs Móveis

Detalhes bibliográficos
Ano de defesa: 2000
Autor(a) principal: Faria, Gedson
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19022020-091603/
Resumo: O problema de aprendizado com robôs é essencialmente fazer com que o robô execute tarefas sem a necessidade de programá-los explicitamente. Nos últimos anos, Aprendizado de Máquina, um subcampo de Inteligência Artificial, tem procurado substituir programação explicita pelo processo de ensinar uma tarefa. O Aprendizado com Reforço é um dos paradigmas do aprendizado não-supervisionado, podendo ser visto como uma forma de ensinar o robô a realizar uma tarefa sem especificar previamente como realizá-la. O problema de aprendizado com reforço pode ser modelado como: um conjunto de estados do ambiente, um conjunto de ações e um conjunto de recompensas Neste trabalho explora-se o potencial dos principais algoritmos de aprendizado com reforço: Q-learning, R-learning e H-learning. Desta forma, foram comparados métodos \"independentes de modelo\" e \"baseados em modelo\", verificando a eficiência de cada algoritmo para a tarefa de navegação em um ambiente dinâmico contendo obstáculos. Além disso, este trabalho propõe um método de navegação baseado em sensores, chamado R-learning, o qual incorpora conceitos de lógica fuzzy ao algoritmo R-learning para a navegação de robôs móveis em ambientes desconhecidos. Foi realizada uma aplicação que consiste em ensinar o robô a encontrar pequenos objetos. Para isto, um conjunto de estados foi mapeado através de conceitos de força de repulsão e para navegação foi utilizado o algoritmo R-learning. O robô mostrou ter um comportamento satisfatório ao realizar esta tarefa.