Detalhes bibliográficos
Ano de defesa: |
2000 |
Autor(a) principal: |
Faria, Gedson |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19022020-091603/
|
Resumo: |
O problema de aprendizado com robôs é essencialmente fazer com que o robô execute tarefas sem a necessidade de programá-los explicitamente. Nos últimos anos, Aprendizado de Máquina, um subcampo de Inteligência Artificial, tem procurado substituir programação explicita pelo processo de ensinar uma tarefa. O Aprendizado com Reforço é um dos paradigmas do aprendizado não-supervisionado, podendo ser visto como uma forma de ensinar o robô a realizar uma tarefa sem especificar previamente como realizá-la. O problema de aprendizado com reforço pode ser modelado como: um conjunto de estados do ambiente, um conjunto de ações e um conjunto de recompensas Neste trabalho explora-se o potencial dos principais algoritmos de aprendizado com reforço: Q-learning, R-learning e H-learning. Desta forma, foram comparados métodos \"independentes de modelo\" e \"baseados em modelo\", verificando a eficiência de cada algoritmo para a tarefa de navegação em um ambiente dinâmico contendo obstáculos. Além disso, este trabalho propõe um método de navegação baseado em sensores, chamado R-learning, o qual incorpora conceitos de lógica fuzzy ao algoritmo R-learning para a navegação de robôs móveis em ambientes desconhecidos. Foi realizada uma aplicação que consiste em ensinar o robô a encontrar pequenos objetos. Para isto, um conjunto de estados foi mapeado através de conceitos de força de repulsão e para navegação foi utilizado o algoritmo R-learning. O robô mostrou ter um comportamento satisfatório ao realizar esta tarefa. |