A Classic Linear System Solver on Modern Hardware Architecture for Sparse Systems

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Urmersbach, Nils
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45132/tde-20230727-113441/
Resumo: Nesse trabalho apresentamos as nossas implementações do Método de Jacobi para sistemas lineares esparsos gerais no formato de Compressed Sparse Row (CSR) usando OpenMP, OpenACC e CUDA. Aplicamos essas implementações no sistema linear derivado da discretização de diferenças finitas centrais da Equação de Poisson em duas dimensões em domínios retangulares e comparamos o desempenho das implementações de CSR com o desempenho de um solver direto da Equação de Poisson usando o estêncil de cinco pontos. Para nosso estudo de caso nós consideramos cinco tamanhos diferentes de malhas (com até \223C67.1 milhões desconhecidos), ambos precisão simples e dupla, e uma variedade de números de threads para a implementação de OpenMP, resultando em 300 configurações diferentes executadas para esse trabalho. Nós discutimos o comportamento de escalagem das implementações diferentes e apresentamos alguns resultados de perfilamento dos nossos programas paralelizados.