Modelo abrangente e reconhecimento de gestos com as mãos livres para ambientes 3D.

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Bernardes Júnior, João Luiz
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-19012011-114850/
Resumo: O principal objetivo deste trabalho é possibilitar o reconhecimento de gestos com as mãos livres, para uso em interação em ambientes 3D, permitindo que gestos sejam selecionados, para cada contexto de interação, dentre um grande conjunto de gestos possíveis. Esse grande conjunto deve aumentar a probabilidade de que se possa selecionar gestos já existentes no domínio de cada aplicação ou com associações lógicas claras com as ações que comandam e, assim, facilitar o aprendizado, memorização e uso dos gestos. Estes são requisitos importantes para aplicações em entretenimento e educação, que são os principais alvos deste trabalho. Propõe-se um modelo de gestos que, baseado em uma abordagem linguística, os divide em três componentes: postura e movimento da mão e local onde se inicia. Combinando números pequenos de cada um destes componentes, este modelo permite a definição de dezenas de milhares de gestos, de diferentes tipos. O reconhecimento de gestos assim modelados é implementado por uma máquina de estados finitos com regras explícitas que combina o reconhecimento de cada um de seus componentes. Essa máquina só utiliza a hipótese que os gestos são segmentados no tempo por posturas conhecidas e nenhuma outra relacionada à forma como cada componente é reconhecido, permitindo seu uso com diferentes algoritmos e em diferentes contextos. Enquanto este modelo e esta máquina de estados são as principais contribuições do trabalho, ele inclui também o desenvolvimento de algoritmos simples mas inéditos para reconhecimento de doze movimentos básicos e de uma grande variedade de posturas usando equipamento bastante acessível e pouca preparação. Inclui ainda um framework modular para reconhecimento de gestos manuais em geral, que também pode ser aplicado a outros domínios e com outros algoritmos. Além disso, testes realizados com usuários levantam diversas questões relativas a essa forma de interação. Mostram também que o sistema satisfaz os requisitos estabelecidos.