Detecção de dano em estruturas via inteligência computacional e análise dinâmica 

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Villalba Morales, Jesús Daniel
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18134/tde-11122012-082530/
Resumo: Nesta tese doutoral estudam-se formas de resolver o problema de detecção de dano em estruturas a partir da aplicação de técnicas de inteligência computacional e da resposta dinâmica da estrutura. Duas opções para a formulação do problema são consideradas. Primeiro, um problema de otimização é estabelecido a partir da minimização da diferença entre os parâmetros dinâmicos experimentais da estrutura na condição com dano e aqueles calculados utilizando um modelo de elementos finitos que representa tal condição. Diferentes técnicas metaheurísticas (algoritmos genéticos, particle swarm optimization, evolução diferencial), algumas em versões com adaptação de parâmetros, são empregadas. Estuda-se, ainda, a formulação do problema de otimização como um com múltiplos objetivos. Uma nova forma de avaliar o desempenho de uma metodologia de detecção de dano é proposta, que está baseada na capacidade da metodologia para obter um nível determinado de exatidão no cálculo da extensão do dano e na presença de falso-negativos e falso-positivos nos resultados. Segundo, aplicam-se redes neurais para determinar o mapeamento entre os parâmetros dinâmicos experimentais da condição atual da estrutura e a extensão ou posição do dano nesta. Estruturas do tipo viga e treliça foram submetidas a diferentes cenários de dano com o intuito de determinar o desempenho das metodologias propostas. Resultados mostram a habilidade de técnicas de inteligência computacional para detecção de cenários de dano com uns poucos elementos danificados; porém não é possível garantir que as metodologias terão sucesso para o 100% dos casos. Recomenda-se a utilização de técnicas de busca local para melhorar a solução encontrada pelos algoritmos globais. Finalmente, observou-se que se requer da determinação da quantidade mínima de informação a ser utilizada, uma função objetivo adequada e uma alta qualidade nas medições para garantir uma detecção de dano confiável.