Aplicação de métodos computacionais a dados vibracionais para detecção de alterações estruturais

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Amaral, Rafaelle Piazzaroli Finotti lattes
Orientador(a): Barbosa, Flávio de Souza lattes
Banca de defesa: Fonseca, Leonardo Goliatt da lattes, Borges, Carlos Cristiano Hasenclever lattes, Pimentel, Roberto Leal lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Modelagem Computacional
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/4624
Resumo: O desafio de se detectar danos e/ou alterações estruturais através de dados vibracionais tem levado ao desenvolvimento de diversas técnicas nas últimas décadas. Grande parte desses métodos busca associar variações de frequências naturais, modos de vibração e taxas de amortecimento em uma estrutura ao surgimento de danos localizados. Em vista disso, surgiram métodos como: o índice MAC (Modal Assurance Criterion), métodos baseados em energia de deformação, métodos baseados em variação de curvatura, análise da matriz de flexibilidade, dentre outros. Apesar de se mostrarem bastante eficazes na detecção de danos em modelos numéricos, salvo em raras exceções, os métodos supracitados apresentam dificuldades quando se trata de problemas práticos com dados obtidos de experimentos reais. Entretanto, abordagens envolvendo técnicas de inteligência computacional vêm sendo apontadas como uma linha de pesquisa promissora nesta área. Dessa forma, o presente trabalho avalia o uso das Redes Neurais Artificiais (ANN - Artificial Neural Networks) e Máquinas de Vetor Suporte (SVM - Support Vector Machines) na detecção de alterações estruturais baseadas na análise da evolução das respostas dinâmicas. Tanto as características modais quanto indicadores estatísticos extraídos diretamente dos sinais temporais são utilizados como parâmetros de entrada dos modelos de inteligência computacional. Além disso, apresenta-se ainda uma nova metodologia desenvolvida com base no histórico de variação das frequências naturais e temperatura, na qual é possível detectar mudanças no comportamento estrutural e apontar o momento em que elas ocorrem a partir de um classificador SVM. A eficiência da metodologia proposta é analisada através de dados obtidos em um modelo numérico de viga biapoiada e dados oriundos de um monitoramento contínuo da Torre de Gabbia, na Itália.