Redes neurais artificiais para consistentes e sua utilização para reconhecimento de padrões.

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: Prado, João Carlos Almeida
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3141/tde-03102024-102826/
Resumo: As Redes Neurais Artificiais têm se mostrado eficientes no aprendizado e reconhecimento de padrões. A Lógica Paraconsistente permite que se tratem inconsistência, paracompletezas e reconhecimento por proximidades. Associando-se a Lógica Paraconsistente às Redes Neurais Artificiais (RNA) pode-se criar uma nova classe de RNA: as Redes Neurais Artificiais Paraconsistentes (RNAP). Introduzidas em DA SILVA FILHO, J.I.; ABE, J.M. Fundamentos das Redes Neurais Artificiais - destacando aplicações em Neurocomputação. 1.ed. São Paulo, Editora Villipress, 2001, entre outras características inovadoras, tal classe de RNA\'s possui a capacidade de manipular dados contraditórios, paracompletos, e até difusos. Para tanto, introduzem-se elementos básicos, denominados Células Neurais Artificiais Paraconsistentes (CNAP\'s) que associadas compõem as Unidades Neurais Artificiais Paraconsistentes (UNAP\'s), que são estruturas que simulam o funcionamento de um neurônio. A partir da associação das UNAP\'s compõem-se os Sistemas Neurais Artificiais Paraconsistentes (SNAP\'s) criando-se partes de Redes Neurais com funções específicas, como se fossem regiões do cérebro humano. Através da associação das CNAP\'s, UNAP\'s e SNAP\'s, criam-se as RNAP\'s, com comportamento paraconsistente nas tomadas de decisões. Neste trabalho, faz-se uma aplicação, utilizando-se as RNAP\'s assim compostas, para aprendizado e reconhecimento de padrões. Pode-se ainda modificar as RNAP\'sestruturalmente, criando-se novos elementos de acordo com as necessidades de cada aplicação.