Uma comparação de técnicas de Aprendizado de Máquina para predição de evasão de estudantes no ensino público superior

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Silva, Jailma Januário da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/100/100131/tde-23052022-092609/
Resumo: A evasão de alunos dos cursos ou das instituições de ensino públicas contribui para um problema de falta de mão de obra qualificada no mercado de trabalho, pois novos profissionais deixam de ser formados e vagas que necessitam de profissionais qualificados ficam ociosas. Além disso, instituições que têm consideráveis perdas de alunos também têm perdas de verbas que poderiam ser utilizadas para mantê-las em bom funcionamento. Adicionalmente à problemática da evasão no ensino superior estão as diferentes situações em que o aluno pode estar no sistema de ensino. De acordo com o Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (INEP), estas situações podem ser classificadas como: alunos com matrícula trancada, alunos desvinculados do curso (alunos evadidos) e alunos transferidos para outro curso da mesma instituição. Dessa forma, o presente trabalho tem por objetivo geral fazer a aplicação de técnicas de aprendizado de máquina em uma base de dados pública para identificar estudantes que estão em diferentes situações no ensino superior brasileiro, conforme identificadas na base de dados disponibilizada pelo INEP. Das técnicas aplicadas(árvores de decisão, Naive Bayes, Regressão Logística e Redes Neurais), as que melhor resultado apresentaram, em termos de acurácia, sensibilidade e especificidade, foram Árvores de decisão apresentando 73% de acurácia, 60% de sensibilidade e 89%de especificidade. Seguido pela técnica de regressão logística com 54% de acurácia, 55% de sensibilidade e 85% de especificidade. Por fim, foi disponibilizado o melhor modelo para a predição dos diferentes vínculos que o aluno pode ter em relação ao ensino superior