Geração automática de laudos médicos para o diagnóstico de epilepsia por meio do processamento de eletroencefalogramas utilizando aprendizado de máquina

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Oliva, Jefferson Tales
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-27032019-111111/
Resumo: A epilepsia, cujas crises são resultantes de distúrbios elétricos temporários no cérebro, é a quarta enfermidade neurológica mais comum, atingindo aproximadamente 50 milhões de pessoas. Essa enfermidade pode ser diagnosticada por meio de eletroencefalogramas (EEG), que são de elevada importância para o diagnóstico de enfermidades cerebrais. As informações consideradas relevantes desses exames são descritas em laudos médicos, que são armazenados com o objetivo de manter o histórico clínico do paciente e auxiliar os especialistas da área médica na realização de procedimentos futuros, como a identificação de padrões de determinadas enfermidades. Entretanto, o crescente aumento no armazenamento de dados médicos inviabiliza a análise manual dos mesmos. Outra dificuldade para a análise de EEG é a variabilidade de opiniões de especialistas sobre um mesmo padrão observado, podendo aumentar a dificuldade para o diagnóstico de enfermidades cerebrais. Também, os exames de EEG podem conter padrões relevantes difíceis de serem observados, mesmo por profissionais experientes. Da mesma forma, nos laudos podem faltar informações e/ou conter erros de digitação devido aos mesmos serem preenchidos apressadamente por especialistas. Assim, neste trabalho foi desenvolvido o método computacional de geração de laudos médicos (automatic generation of medical report AutoGenMR), que tem o propósito de auxiliar especialistas da área médica no diagnóstico de epilepsia e em tomadas de decisão. Esse processo é aplicado em duas fases: (1) construção de classificadores por meio de métodos de aprendizado de máquina e (2) geração automática de laudos textuais. O AutoGenMR foi avaliado experimentalmente em dois estudos de caso, para os quais, em cada um foi utilizada uma base de EEG disponibilizada publicamente e gratuitamente. Nessas avaliações foram utilizadas as mesmas configurações experimentais para a extração de características e construção de classificadores (desconsiderando que um dos problemas de classificação é multiclasse e o outro, binário). No primeiro estudo de caso, os modelos preditivos geraram, em média, 89% das expressões de laudos. Na segunda avaliação experimental, em média, 76% das sentenças de laudos foram geradas corretamente. Desse modo, os resultados de ambos estudos são considerados promissores, constatando que o AutoGenMR pode auxiliar especialistas na identificação de padrões relacionados a eventos epiléticos, na geração de laudos textuais padronizados e em processos de tomadas de decisão.