Classificação de imagens de plâncton usando múltiplas segmentações

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Fernandez, Mariela Atausinchi
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-29052017-141908/
Resumo: Plâncton são organismos microscópicos que constituem a base da cadeia alimentar de ecossistemas aquáticos. Eles têm importante papel no ciclo do carbono pois são os responsáveis pela absorção do carbono na superfície dos oceanos. Detectar, estimar e monitorar a distribuição das diferentes espécies são atividades importantes para se compreender o papel do plâncton e as consequências decorrentes de alterações em seu ambiente. Parte dos estudos deste tipo é baseada no uso de técnicas de imageamento de volumes de água. Devido à grande quantidade de imagens que são geradas, métodos computacionais para auxiliar no processo de análise das imagens estão sob demanda. Neste trabalho abordamos o problema de identificação da espécie. Adotamos o pipeline convencional que consiste dos passos de detecção de alvo, segmentação (delineação de contorno), extração de características, e classificação. Na primeira parte deste trabalho abordamos o problema de escolha de um algoritmo de segmentação adequado. Uma vez que a avaliação de resultados de segmentação é subjetiva e demorada, propomos um método para avaliar algoritmos de segmentação por meio da avaliação da classificação no final do pipeline. Experimentos com esse método mostraram que algoritmos de segmentação distintos podem ser adequados para a identificação de espécies de classes distintas. Portanto, na segunda parte do trabalho propomos um método de classificação que leva em consideração múltiplas segmentações. Especificamente, múltiplas segmentações são calculadas e classificadores são treinados individualmente para cada segmentação, os quais são então combinados para construir o classificador final. Resultados experimentais mostram que a acurácia obtida com a combinação de classificadores é superior em mais de 2% à acurácia obtida com classificadores usando uma segmentação fixa. Os métodos propostos podem ser úteis para a construção de sistemas de identificação de plâncton que sejam capazes de se ajustar rapidamente às mudanças nas características das imagens.