Planejamento hierárquico sob incerteza Knightiana

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Herrmann, Ricardo Guimaraes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-06082008-171546/
Resumo: Esta dissertação tem como objetivo estudar a combinação de duas técnicas de planejamento em inteligência artificial: planejamento hierárquico e planejamento sob incerteza Knightiana. Cada uma delas possui vantagens distintas, mas que podem ser combinadas, permitindo um ganho de eficiência para o planejamento sob incerteza e maior robustez a planos gerados por planejadores hierárquicos. Primeiramente, estudamos um meio de efetuar uma transformação, de modo sistemático, que permite habilitar algoritmos de planejamento determinístico com busca progressiva no espaço de estados a tratar problemas com ações não-determinísticas, sem considerar a distribuição de probabilidades de efeitos das ações (incerteza Knightiana). Em seguida, esta transformação é aplicada a um algoritmo de planejamento hierárquico que efetua decomposição a partir das tarefas sem predecessoras, de modo progressivo. O planejador obtido é competitivo com planejadores que representam o estado-da-arte em planejamento sob incerteza, devido à informação adicional que pode ser fornecida ao planejador, na forma de métodos de decomposição de tarefas.