Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Costa, Renata Soares da |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/104/104131/tde-13082019-105027/
|
Resumo: |
Frequentemente eventos intermediários fornecem informações mais detalhadas sobre o processo da doença ou recuperação, por exemplo, e permitem uma maior precisão na previsão do prognóstico de pacientes. Tais eventos não fatais durante o curso da doença podem ser vistos como transições de um estado para outro. A ideia básica dos modelos multiestado é que o indivíduo se move através de uma serie de estados em tempo contínuo, sendo possível estimar as probabilidades e intensidades de transição entre eles e o efeito das covariáveis associadas a cada transição. Muitos estudos incluem o agrupamento dos tempos de sobrevivência como, por exemplo, em estudos multicêntricos, e também é de interesse estudar a evolução dos pacientes ao longo do tempo, caracterizando assim dados multiestado agrupados. Devido ao fato de os dados virem de diferentes centros/grupos, os tempos de falha desses indivíduos estarem agrupados e a fatores de risco comuns não observados, é interessante considerar o uso de fragilidades para que possamos capturar a heterogeneidade entre os grupos no risco para os diferentes tipos de transição, além de considerar a estrutura de dependência entre transições dos indivíduos de um mesmo grupo. Neste trabalho apresentamos a metodologia dos modelos multiestado, dos modelos de fragilidade e, em seguida, a integração dos modelos multiestado com modelos de fragilidade, tratando do seu processo de estimação paramétrica e semiparamétrica. O estudo de simulação realizado mostrou a importância de considerarmos fragilidade sem modelos multiestado agrupados, pois sem considerá-las, as estimativas tornam-se viesadas. Além disso, verificamos as propriedades frequentistas dos estimadores do modelo multiestado com fragilidades aninhadas. Por fim, como um exemplo de aplicação a um conjunto de dados reais, utilizamos o processo de recuperação de transplante de medula óssea de pacientes tratados em quatro hospitais. Fizemos uma comparação de modelos por meio das medidas de qualidade do ajuste AIC e BIC, chegando à conclusão de que o modelo que considera dois efeitos aleatórios (uma para o hospital e outro para a interação transição-hospital) ajusta-se melhor aos dados. Além de considerar a heterogeneidade entre os hospitais, tal modelo também considera a heterogeneidade entre os hospitais em cada transição. Sendo assim, os valores das fragilidades estimadas da interação transição-hospital revelam o quão frágeis os pacientes de cada hospital são para experimentarem determinado tipo de evento/transição. |