Modelo de regressão para um processo de renovação Weibull com termo de fragilidade

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Fogo, José Carlos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-26092007-104428/
Resumo: Processsos de renovação são um caso especial de processos pontuais envolvendo eventos recorrentes nos quais um item ou unidade, após a ocorrência de uma falha, é recolocado na mesma condição de novo. Devido a essa propriedade os tempos entre ocorrências para um processo de renovação são independentes e a sua função intensidade é dada pela função de risco. Fatores que interferem nos tempos de recorrência de unidades distintas, ou indivíduos, e que não são observados, podem ser modelados com a inclusão de um termo de fragilidade no modelo. Neste trabalho é apresentado o desenvolvimento de um modelo de regressão para um processo de renovação com tempos entre ocorrências com distribuição de Weibull. Na modelagem foi considerada, ainda, a presença de censuras e a inclusão de um termo de fragilidade para explicar a relação existente entre os tempos de recorrências de uma unidade. A metodologia é desenvolvida para o caso em que várias unidades são acometidas por eventos recorrentes. Nas simulações realizadas foram analisadas as probabilidades de cobertura empíricas do intervalo de confiança normal assintótico e também o comportamento das variâncias dos estimadores. A presença de censuras na amostra inflacionou as variâncias dos estimadores de máxima verossimilhança além de produzir estimativas viciadas para um dos parâmetros da regressão, sendo que o vício do estimador foi corrigido por meio de um processo "bootstrap". Na modelagem sem termo de fragilidade, os resultados das análises das probabilidades de cobertura empírica dos intervalos de confiança assintóticos mostraram uma boa aproximação com os valores esperados, mas com certos cuidados a serem tomados, especialmente nos procedimentos baseados na simetria das distribuições empíricas. A inclusão de um termo de fragilidade na modelagem, por sua vez, causou uma perturbação na estimação máxima verossimilhança com um aumento nas variâncias dos estimadores diretamente associados à variabilidade do termo de fragilidade. Além disso, as coberturas empíricas dos intervalos de confiança assintóticos foram, na grande maioria superestimadas, com resultados satisfatórios apenas para o parâmetro de forma da distribuição Weibull.